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Abstract 

In this digest, the deep operator network (DeepONet) is 
used to model the nonlinear hysteretic behaviour of 
ferromagnetic materials. We first generate a set of BH-
curves (with H, the magnetic field and B, the magnetic 
flux density) by means of the Jiles-Atherton model to 
train, validate and test the deep neural operator network. 
The constructed model is validated by comparing the 
predicted B values and the hysteresis losses with 
reference values. Attention is paid to feasibility and 
accuracy. 

1 Introduction 

The design and analysis of electrotechnical devices 
(rotating electrical machines, transformers, inductors) 
requires an accurate loss computation, accounting for the 
losses in nonlinear ferromagnetic materials, and in 
particular the hysteresis[1]. Traditionally, there are two 
widely used phenomenal hysteresis models: Preisach 
model [3] and Jiles-Atherton (J-A) model [4]. The 
Preisach model provides good accuracy even for minor 
loops, but it is computationally expensive. In the contrary, 
the J-A model calculates the magnetization by solving 
ordinary differential equation considering sign of 
derivative of the magnetic field, which makes it easier to 
implement and computationally cheaper [2]. 

With the advent of machine learning, some recurrent 
neural network (RNN) based hysteresis models are 
proposed considering that the inherent memory-based 
characteristics of RNN aligns with the hysteresis 
characteristics. By combining the RNN with Preisach play 
operator, the trained RNN can also perform well on 
predicting hysteresis loops with random ramp-rates [5]. 
However, RNN based models are only accurate under 
certain circumstances, limited to loops for which training 
has been performed [7]. 

Based on the universal operator approximation theorem, 
the operator neural network is proposed. It allows 
mapping an infinite function space to another infinite 
function space. There are mainly two types of neural 
operator: Deep operator network (DeepONet) [8] and 
Fourier neural operator (FNO) [9]. DeepONet can employ 
any type of neural network architectures in the branch net 

whereas FNO has a fixed architecture, hence DeepONet 
is more flexible than FNO in terms of problem settings 
and datasets [10]. These neural operators have 
successfully been applied to complex problems in fluid 
dynamics, heat transfer problems, but rarely in 
electromagnetics. In this digest, neural operator 
specifically the DeepONet is used to model the 
hysteresis of ferromagnetic material.  

2 Methods and results 

2.1 Deep operator network 

Let 𝔾 be an operator taking as input function 𝑢, with 𝔾(𝑢) 
being the corresponding output function. For any point 𝑦 
in the domain of 𝔾(𝑢) , the output 𝔾(𝑢)(𝑦)  is a real 
number. Hence, the network takes inputs composed of 
two parts: 𝑢 and 𝑦. and outputs 𝔾(𝑢)(𝑦).In DeepONet, 
there are two networks: the branch net and the trunk net. 
The trunk network takes 𝑦  as the input while	
[	𝑢(𝑥!), 𝑢(𝑥"), 𝑢(𝑥#)…𝑢(𝑥$)]	 with 𝑛  the number of 
training data are the inputs for the branch network. The 
outputs of these two networks are then merged to 
approximate the output functions [8].	

2.2 Generating the training data 

With the effect of hysteresis, under the excitation of H 
with different peak values and phase shifts, the 
corresponding B are different. To learn the nonlinear 
relation between B and H, a group of B-H curves are 
generated by means of the classical J-A model [4]. Five 
hundred sinusoidal H with amplitude ranging in [1,1000] 
A/m and random phase shift within [0,2𝜋) for four periods 
are used as the excitation to J-A model to calculate the 
corresponding B. The frequency effect is not considered 
in this study, so the frequency is always set as 1 Hz. The 
timestep is kept constant as 125 steps per period so there 
are totally 4x125 = 500 timesteps for function. 

For training the model, n = 500 functions of H are the 
inputs to branch net as [	𝑢(𝑥!), 𝑢(𝑥"), 𝑢(𝑥#)…𝑢(𝑥%&&)]and 
the discretized time space are the inputs to trunk net as 
𝑦.	The corresponding B for each H are used as the 
references for 𝔾(𝑢)(𝑦) . The loss of the model is 
calculated by the mean square error (MSE) between the 
predictions and the reference outputs. 
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2.3 Results 

After 50000 iterations, the loss is decreased as around 
1e-5. Then, the sinusoidal shape of H with random phase 
shift and peak values as 400, 700 and 900 A/m are used 
to test the model. All the test data are outside of the 
training data. 

The predictions from the trained neural operator model 
and the reference values are plotted in Figure 1(a).  The 
results almost overlap with the corresponding references. 
Figure 1(b) shows the errors, which are mainly less than 
10 mT and the mean error is 3.9 mT. The corresponding 
hysteresis loops are shown in Figure 2. , from which, the 
hysteresis losses are calculated as the areas of loops.  
Table1 lists the losses from predictions and references. 

  

(a) Predictions  (b) Errors  

Figure 1. Magnetic flux density from DeepONet and 
reference values. 

 
Figure 2. Hysteresis loops from DeepONet and 

reference. 

 Reference 
(J/m³) 

Predictions 
(J/m³) 

Relative 
error 

H400 
H700 
H900 

140.32	 
686.30	 

1196.10	 

140.02	 
688.39  

1185.40	 
 

0.21% 
0.30% 
0.89% 

 

Table 1. Hysteresis losses calculated by DeepONet and 
reference. 

3 Conclusion 

In this digest, a deep operator neural network is built to 
model the hysteresis of ferromagnetic materials with 
different peak values and phase shift. The established 
operator model can predict B with sinusoidal excitation of 
H outside of the training data very accurately with error 
less than 10 mT. Besides, the relative error between the 
predicted and reference hysteresis losses is less than 
1%, which shows the great ability of established model 
for capturing magnetic hysteresis. In our future work, the 
model would be expanded as the dynamic hysteresis 
model considering the effect of frequency and eddy 
currents. 
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